Take the Diabetes Health Pump Survey
See What's Inside
Read this FREE issue now
For healthcare professionals only
  • 12 Tips for Traveling With Diabetes
See the entire table of contents here!

You can view the current or previous issues of Diabetes Health online, in their entirety, anytime you want.
Click Here To View

See if you qualify for our free healthcare professional magazines. Click here to start your application for Pre-Diabetes Health, Diabetes Health Pharmacist and Diabetes Health Professional.

Learn More About the Professional Subscription

Free Diabetes Health e-Newsletter
Latest
Popular
Top Rated
Diabetes Health Reference Charts
Insulin Archives
Print | Email | Share | Comments (0)

New Joslin Study Reveals How a Specific Fat Type Can Protect Against Weight Gain and Diabetes

Mar 7, 2007

This press release is an announcement submitted by Joslin Diabetes Center, and was not written by Diabetes Health.

BOSTON - March 1, 2007 - A new study from Joslin Diabetes Center may shed light on why some people can eat excessive amounts of food and not gain weight or develop type 2 diabetes, while others are more likely to develop obesity and this most common form of diabetes on any diet.

The study, which used two strains of mice with differing tendencies to gain weight and develop diabetes on a high-fat diet, identified genetic and cellular mechanisms that may prevent certain mice on a calorie-dense diet from gaining weight and developing metabolic syndrome.

“Although this study was done with mice, it points out new mechanisms that may underlie the ability of genetically different mice—and perhaps genetically different people—to not gain much weight on high caloric diets,” said lead investigator C. Ronald Kahn, M.D., an internationally recognized researcher who is Head of Joslin’s Section on Obesity and Hormone Action and the Mary K. Iacocca Professor of Medicine at Harvard Medical School.

The study, published in the online edition of the Proceedings of the National Academy of Sciences on Feb. 5-9, builds upon years of research at Joslin and elsewhere on energy metabolism and the genetics of fat cells.

It has long been known that people significantly differ in their tendency to gain weight and develop metabolic syndrome, a group of conditions including hypertension, abdominal obesity, high triglycerides and glucose intolerance that can lead to type 2 diabetes. More than 60 million Americans either are obese or have metabolic syndrome, putting them at risk for type 2 diabetes and its frequent complications, including cardiovascular disease and other serious conditions. Currently 21 million Americans have diabetes and approximately one-third of them do not even know they have the disease. Formerly known as adult-onset diabetes, type 2 diabetes is occurring more frequently in young adults and even children.

Previous studies at Joslin and elsewhere have uncovered the differing functions of the two types of body fat—white and brown. White fat, the more familiar form of fat that accumulates in the abdomen, thighs, buttocks and under the skin, stores energy for future needs, whereas brown fat or brown adipose tissue (BAT) burns energy and generates heat.

White fat, which is packed with large lipid droplets, is deposited under the skin, around internal organs and as visceral fat—one of the most harmful forms of abdominal fat. Brown fat, on the other hand, contains small lipid droplets tucked behind tiny energy factories called mitochondria. These cells are most prevalent in the necks of infants and between the shoulder blades in mice to help their bodies generate heat, but tend to mostly disappear by adulthood. A 2005 Joslin study by Dr. Kahn and his colleagues discovered genes that control the creation of the precursor cells that give rise to brown fat cells. This latest study shows that brown fat may not disappear in all adult animals and that little collections of brown fat may account for why some mice are protected from obesity and diabetes and others are not.

This study began by exploring differences in basal energy expenditure (the amount of energy required to maintain the body’s normal metabolic activity, such as respiration and maintenance of body temperature) and its role in the development of obesity and metabolic syndrome in two different genetic strains of mice: the B6 mouse and the 129 mouse. The B6 mouse is one of the most commonly used strains in metabolic research and an established model for diet-induced obesity.

When placed on a high-fat diet, the B6 mouse develops severe obesity, high blood glucose and insulin resistance with extremely high insulin levels. By contrast, the 129 mouse gains on average 30 to 50 percent less weight on either a high or low-fat diet than the B6 mouse and has been considered resistant to dietary induced obesity and glucose intolerance. In the new study, Dr. Kahn and his colleagues showed that this difference is due to the higher basal energy expenditure in the 129 mouse. When searching for the source of the energy expenditure, the researchers found unexpected clusters of brown fat cells stuck between bundles of muscle fibers in the leg of the mouse. In this case, the 129 mouse had over 100 times more brown fat in muscle than the B6 mouse.

“This site of brown fat was previously unrecognized and is certainly one of the reasons for the differences in energy expenditure between strains of mice. Now we need to see if the same is true for humans and if this could account for why some people gain weight easily and others seem to be protected against weight gain and metabolic syndrome that can lead to type 2 diabetes,” Dr. Kahn said. “Finding drugs that stimulate the amount or activity of this brown fat could also lead to a new therapy for obesity and prevention of diabetes.”

Other researchers participating in the study include: lead author Katrine Almind, Ph.D., formerly of Joslin and now of Novo Nordisk, Denmark; Monia Manieri and Saverio Cinti, M.D., Institute of Normal Human Morphology-Anatomy, University of Ancona, Italy; and William I. Sivitz, Ph.D., Department of Internal Medicine, University of Iowa, Iowa City.

About Joslin Diabetes Center

Joslin Diabetes Center, dedicated to conquering diabetes in all of its forms, is the global leader in diabetes research, care and education. Founded in 1898, Joslin is an independent nonprofit institution affiliated with Harvard Medical School. Joslin research is a team of more than 300 people at the forefront of discovery aimed at preventing and curing diabetes. Joslin Clinic, affiliated with Beth Israel Deaconess Medical Center in Boston, the nationwide network of Joslin Affiliated Programs, and the hundreds of Joslin educational programs offered each year for clinicians, researchers and patients, enable Joslin to develop, implement and share innovations that immeasurably improve the lives of people with diabetes. As a nonprofit, Joslin benefits from the generosity of donors in advancing its mission. For more information on Joslin, call 1-800-JOSLIN-1 or visit joslin.org.


Categories: Blood Glucose, Diabetes, Diabetes, Food, Food News, Insulin, Novo Nordisk, Professional Issues, Type 2 Issues



You May Also Be Interested In...


Comments


Add your comments about this article below. You can add comments as a registered user or anonymously. If you choose to post anonymously your comments will be sent to our moderator for approval before they appear on this page. If you choose to post as a registered user your comments will appear instantly.

When voicing your views via the comment feature, please respect the Diabetes Health community by refraining from comments that could be considered offensive to other people. Diabetes Health reserves the right to remove comments when necessary to maintain the cordial voice of the diabetes community.

For your privacy and protection, we ask that you do not include personal details such as address or telephone number in any comments posted.

Don't have your Diabetes Health Username? Register now and add your comments to all our content.

Have Your Say...


Username: Password:
Comment:
©1991-2014 Diabetes Health | Home | Privacy | Press | Advertising | Help | Contact Us | Donate | Sitemap

Diabetes Health Medical Disclaimer

The information on this site is not intended or implied to be a substitute for professional medical advice, diagnosis or treatment. All content, including text, graphics, images, and information, contained on or available through this website is for general information purposes only. Opinions expressed here are the opinions of writers, contributors, and commentators, and are not necessarily those of Diabetes Health. Never disregard professional medical advice or delay seeking medical treatment because of something you have read on or accessed through this website.